The research interests in Yang lab spans from basic science targeting fundamental mechanisms underlying human diseases, to translational medicine aiming at advancing the diagnosis and treatment of human illness. Our current research programs focus on identifying novel mediators/pathways that mediate cardiac/non-cardiac organ fibrosis, cardiomyopathy, atherosclerosis and cardiac regeneration.
Identifying novel mediators of organ fibrosis as new therapeutic targets
Exploiting a combined approach of RNASeq-based bioinformatics, molecular, cellular and animal studies, we have discovered multiple novel molecular determinants, including long noncoding RNAs and ER-resident protein TXNDC5, which contribute critically to the development of cardiac fibrosis and cardiomyopathy. These results not only shed new lights on the pathogenesis of cardiovascular diseases, but also hinting a novel therapeutic opportunity by targeting these pathogenic mediators/pathways. Our research has yielded multiple high-impact publications in the field of cardiovascular research, including Circulation (Circulation 2014), Circulation Research (Circ Res 2015, 2018) and Nature Communications (2020, in press). Now we are ready to extend our research findings to tackle atherosclerosis, cardiac arrhythmias, as well as to fibrotic disorders involving non-cardiac organs and tumorigenesis.
Deciphering the functional roles of non-coding RNAs in cardiovascular diseases
One of the research focuses in Yang lab is to explore the functional roles of non-coding RNAs, specifically long non-coding RNAs (lncRNA) and snoRNAs, in myocardial diseases and cardiac arrhythmias. Using next-generation sequencing technology, we have completed a comprehensive cardiac transcriptome profiling in human non-failing and cardiomyopathic samples, and have identified distinctive expression pattern and putative functions of hundreds of human cardiac lncRNAs and snoRNAs that are involved in the pathogenesis of cardiomyopathy. By combining comparative genomics and molecular genetics in cellular and animal models, we are beginning to uncover the molecular functions of several interesting lncRNAs and snoRNAs that are involved in myocardial fibrosis, cardiac hypertrophy and electrical remodeling. We are also applying CRISPR (clustered regularly interspaced short palindromic repeats) genome editing technology to control lncRNA expression levels in vitro and in vivo to advance our understanding of the functional roles of various cardiac lncRNAs and snoRNAs. In addition, we are exploring the possibility of using myocardial and circulating lncRNAs as the biomarkers for cardiovascular disease diagnosis and outcome prediction.
Mitochondrial oxidative stress, gap junction remodeling and cardiac arrhythmias
Oxidative stress has been shown to play a critical role in the pathogenesis of cardiac hypertrophy, heart failure and arrhythmias. It has been discovered that increased mitochondrial reactive oxidative species (mitoROS) is responsible for cardiac gap junction protein connexin 43 (Cx43) downregulation, slow conduction and increased arrhythmogenecity in response to enhanced renin-angtiotensin system (RAS) activity. Our recent work has shown that increased cardiac RAS signaling leads to eNOS-mediated caveolin 1 (Cav1) S-nitrosation, decreased Cav1-cSrc interaction, cSrc activation and increased Cx43 degradation. Pharmacological inhibition of mitoROS or cSrc tyrosine kinase abrogates RAS-induced Cx43 downregulation, conduction abnormality and arrhythmias. We are currently exploring the molecular mechanisms transducing RAS signaling to increased mitoROS production, as well as the intriguing molecular function of eNOS in sensing cellular redox status and modulating the electrical functioning in the cardiomyocytes.
本實驗室主題在利用次世代定序及資訊生物學,尋找心血管疾病的新型致病分子,以細胞、分生、基因轉殖動物進行相關基礎研究,闡明相關分子機轉,並進一步探索以這些新型致病分子為治療臨床心血管疾病與器官衰竭的可能。本實驗室在過去這幾年間,利用這樣的研究模式,找到了多個與心臟衰竭與器官纖維化相關的重要分子,並證明它們在致病機轉上的角色。我們目前的研究主題包括:
器官纖維化的新型致病分子與機轉
器官纖維化是一個異常的組織損傷修複過程,通常在器官受到缺氧或發炎傷害之後發生,往往會造成不可逆性的器官病變甚至衰竭。一般在受到化學性、免疫性或物理性傷害時,身體的防禦系統與細胞間質製造會增加並進行組織修復,以維持器官正常功能及衡定。然而,組織修復的過程如果失去控制,纖維母細胞過度活化增生、胞外間質製造累積過量,會導致組織纖維化而使器官失去正常功能,甚至發生器官衰竭。
我們的研究團隊最近發現一個內質網蛋白Thioredoxin Domain Containing 5 (TXNDC5)在心臟纖維化的過程扮演重要角色 (Shih et al, Circ Res 2018)。我們發現TXNDC5在纖維化的心臟組織中表達量顯著上升,且能透過兩種不同機轉促進心肌纖維化:其一能透過增加纖維母細胞中氧化壓力,激活JNK而使纖維母細胞活化增生,其二是能透過其protein disulfide isomerase活性來協助ECM蛋白折疊,增加ECM分泌的產量。我們在小鼠進行Txndc5基因剔除後,發現心臟受β agonist刺激造成的心肌功能受損及心肌纖維化都能獲得改善。我們推測,TXNDC5在其他器官組織的纖維化可能也具有重要角色,同時可能也參與腫瘤基質形成與癌症的發生。我們目前的研究在探討TXNDC5如何刺激肺臟、肝臟、腎臟及腫瘤纖維母細胞的活化增生,以及促進ECM製造的分子機轉,並開發抑制TXNDC5功能的小分子藥物,期能做為治療或預防器官纖維化的新型治療工具。
心肌發炎與再生的分子機轉
成年哺乳動物(包括人類)心臟缺乏再生能力,是造成心肌受損後無法完全恢復正常功能的重要因素,也是許多不同心血管疾病最後導致心臟衰竭發生的關鍵。因為心肌細胞缺乏再生能力,成年哺乳動物心臟在受損後,無法再生心肌細胞,而增生的纖維組織會取代心肌細胞受傷死亡後留下的空間,造成心肌收縮力下降,並導致心室重塑,肥厚或擴大,進而引發心衰竭甚至死亡。不同於人類,許多演化上較原始的脊椎生物例如部分魚類與兩生類、甚至新生一週內的齧齒類與大型哺乳類動物,在心肌壞死後仍保有再生能力,能夠完美的恢復組織型態與功能。近期有研究顯示,心臟中的巨噬細胞為新生小鼠進行心臟再生的必要條件之一,缺乏巨噬細胞下的新生小鼠心臟無法再生,顯示巨噬細胞在心臟再生與恢復心臟功能上具有重要的角色。然而,目前關於巨噬細胞如何在哺乳類心臟中調控心臟修復與再生,仍然很不清楚。本實驗室目前藉由研究比較具有能進行心臟再生的新生小鼠與不具心臟再生能力的成年小鼠,在心肌受損壞死後的巨噬細胞的動態調控,並利用單細胞定序及基因轉殖鼠進一步了解其背後的調控機制以及如何將知識轉譯為新的治療策略,並幫助心肌梗塞病患促進心肌細胞再生並進而恢復心臟功能。
長鏈非編碼核醣核酸在心臟衰竭的的致病角色
近年來基因體醫學的進展迅速,目前已經發現真核生物基因體的轉錄程度遠超越過去生物學家的認知。過去認為真核生物的基因主要轉錄為信使核醣核酸(messeger RNA, mRNA)及微核醣核酸(microRNA, miRNA),一共只佔所有轉錄基因數量的1%;超過90%以上的真核基因體轉錄為長鏈非編碼核醣核酸(long noncoding RNA, lncRNA)。LncRNA是由一群異質性高,長度大於200核苷酸的非編碼RNA所組成。許多lncRNA已經被發現在調節生理及病理機轉上具有重要性,他們雖然不能轉錄蛋白質,但卻能經由改變表觀基因體(epigenetic),調節基因轉錄及核酸轉譯的機制來調節生理功能及疾病發生。在癌症及退化性神經疾病的領域,已經有許多研究證明lncRNA的異常表現是導致人體癌症及神經元變化的重要機轉之一;關於lncRNA在人類疾病的研究發展雖然十分迅速,但目前針對lncRNA在心血管系統生理及疾病的研究非常稀少,lncRNA在心肌肥厚或心臟衰竭的病態生理上的角色也不清楚。
本實驗室利用次世代高速核酸定序(Next-generation sequencing)針對人體心肌組織的RNA表現進行分析,發現lncRNA在心臟衰竭組織中的表現與正常心肌組織相比,有相當大的變化。基因表現網絡分析發現有數個lncRNA與心臟衰竭的病理變化如調節鈣離子衡定及纖維化有關,我們目前正在探討這些lncRNA在心肌細胞中調節鈣離子衡定及纖維化相關基因表現的詳細分子機轉,未來希望能藉此開發新型治療心衰竭的藥物。