Dr. Lim, Carmay 's orcid link picture Dr. Lim, Carmay 's publons link picture

Dr. Lim, Carmay

Emeritus Research Fellow
  • +886-2-2789-9043 (Lab) (Room No: N117)
  • +886-2-2652-3031 (Office)
  • +886-2-2788-7641 (Fax)

Specialty:
  • Computational Biophysics
  • Computational Chemistry
  • Bioinformatics

Education and Positions:
  • 1984, Ph.D. in Chemical Physics, University of Minnesota, Minneapolis

    1979, B.S. in Chemistry, Royal Holloway College, London University

     


Highlight Detail
...

Multi-targeting of functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-ejectors†

Dr. Lim, Carmay
Chemical Science, Sep 01, 2020

 

 

 

Abstract

We present a near-term treatment strategy to tackle pandemic outbreaks of coronaviruses with no specific drugs/vaccines by combining evolutionary and physical principles to identify conserved viral domains containing druggable Zn-sites that can be targeted by clinically safe Zn-ejecting compounds. By applying this strategy to SARS-CoV-2 polyprotein-1ab, we predicted multiple labile Zn-sites in papain-like cysteine protease (PLpro), nsp10 transcription factor, and nsp13 helicase. These are attractive drug targets because they are highly conserved among coronaviruses and play vital structural/catalytic roles in viral proteins indispensable for virus replication. We show that five Zn-ejectors can release Zn2+ from PLpro and nsp10, and clinically-safe disulfiram and ebselen can not only covalently bind to the Zn-bound cysteines in both proteins, but also inhibit PLpro protease. We propose combining disulfiram/ebselen with broad-spectrum antivirals/drugs to target different conserved domains acting at various stages of the virus life cycle to synergistically inhibit SARS-CoV-2 replication and reduce the emergence of drug resistance.