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The F(ab′)2 fragment of the anti-TAG-72 antibody, B72.3, was covalently linked to Escherichia coli-
derived â-glucuronidase that was modified with methoxypoly(ethylene glycol). The conjugate (B72.3-
âG-PEG) localized to a peak concentration in LS174T xenografts within 48 h after injection, but enzyme
activity persisted in plasma such that prodrug administration had to be delayed for at least 4 days to
avoid systemic prodrug activation and associated toxicity. Conjugate levels in tumors decreased to
36% of peak levels at this time. Intravenous administration of AGP3, an IgM mAb against methoxypoly-
(ethylene glycol), accelerated clearance of conjugate from serum and increased the tumor/blood ratio
of B72.3-âG-PEG from 3.9 to 29.6 without significantly decreasing the accumulation of conjugate in
tumors. Treatment of nude mice bearing established human colon adenocarcinoma xenografts with
B72.3-âG-PEG followed 48 h later with AGP3 and a glucuronide prodrug of p-hydroxyaniline mustard
significantly (p e 0.0005) delayed tumor growth with minimal toxicity compared to therapy with a
control conjugate or conventional chemotherapy.

INTRODUCTION

A major goal of antitumor drug development is to
increase the therapeutic index of chemotherapy, thereby
improving treatment efficacy. One approach to increase
the therapeutic index of chemotherapy is to preferentially
activate antineoplastic prodrugs at cancer cells but not
normal tissues. Tumor selectivity may be achieved by
enzymatically converting prodrugs possessing low toxicity
to highly toxic anti-neoplastic agents by previously
administered antibody-enzyme conjugates (immunoen-
zymes) that have been allowed to accumulate at tumor
cells (Bagshawe et al., 1988; Senter et al., 1988). Even
though maximum accumulation of immunoenzymes in
tumors occurs around 24 h after administration (Bosslet
et al., 1994; Wallace et al., 1994), prodrugs are generally
administered from 3 to 7 days (Bosslet et al., 1994;
Svensson et al., 1998) to up to 2 weeks (Eccles et al.,
1994) later to allow adequate time for conjugate to clear
from the blood, thereby minimizing systemic prodrug
activation and associated toxicity to normal tissues.
Although exceptions have been reported for rapidly
clearing immunoenzymes (Siemers et al., 1997), the
requisite of low circulating levels of immunoenzyme often
precludes prodrug administration when maximum local-
ization has been achieved.

Prodrugs can be administered during the period of
maximum tumor accumulation of immunoenzymes if
circulating conjugates are removed or deactivated. Sev-
eral methods have been devised to accelerate the clear-
ance of radioimmunoconjugates and immunoenzymes

from the circulation including the administration of
polyclonal (Stewart et al., 1990) and anti-idiotypic anti-
bodies (Ullen et al., 1995) against the antibody portion
of the immunoconjugate, injection of avidin to clear
biotinylated antibodies (Paganelli et al., 1991), use of
monoclonal antibodies against enzymes to clear (Kerr et
al., 1993; Haisma et al., 1995) or deactivate (Sharma et
al., 1990) immunoenzymes, and extracorporeal immu-
noadsorption (Tennvall et al., 1997) to remove immuno-
conjugates from plasma.

We have recently developed a mAb1 (AGP3) that binds
to poly(ethylene glycol) (PEG) and accelerates the clear-
ance of immunoconjugates that have been modified with
PEG (Cheng et al., 1999b). PEG-modified proteins often
exhibit extended serum half-lives, reduced immunoge-
nicity, and decreased susceptibility to proteolytic degra-
dation (Delgado et al., 1992). Antibody fragments and
immunoconjugates that have been modified with PEG
also display reduced normal tissue uptake and enhanced
tumor accumulation (Pedley et al., 1994; Delgado et al.,
1996; Cheng et al., 1997). Clearance of PEG-modified
immunoconjugates with AGP3 may, therefore, be gener-
ally useful. In the present study, we examined whether
AGP3 could improve tumor-blood ratios and allow earlier
administration of prodrug in a preclinical model of
human colorectal carcinoma. PEG-modified âG was co-
valently linked to the F(ab′)2 fragment of mAb B72.3, an
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IgG1 antibody that binds to TAG-72 antigen expressed
on the majority of colon adenocarcinomas, invasive ductal
carcinomas of the breast, nonsmall cell lung carcinomas,
common epithelial ovarian carcinomas, and gastric,
pancreatic, and esophageal cancers with limited reactiv-
ity to normal adult tissues (Thor et al., 1986). mAb B72.3
is approved for clinical use as an imaging agent (Oncos-
cint CR/OV) for colorectal and ovarian carcinoma (Divgi,
1996). We show that clearance of a PEG-modified B72.3
immunoenzyme with AGP3 produced higher tumor-blood
ratios without sacrificing tumor accumulation, allowing
earlier prodrug administration with minimal toxicity.

MATERIALS AND METHODS

Reagents. The syntheses of pHAM and BHAMG have
been described (Roffler et al., 1991). Bolton-Hunter
reagent (125I) was purchased from Amersham (Bucking-
hamshire, England). Succinimidyl succinate poly(ethyl-
ene glycol), MW ) 5000, p-nitrophenyl-â-D-glucuronide,
and Sepharose CL-4B protein A were purchased from
Sigma Chemical Company, St. Louis, MO. Succinimidyl-
4-(N-maleimidomethyl)cyclohexane 1-carboxylate (SMCC)
was from Pierce Chemical Company, Rockford, IL. Sepha-
dex G-25 and Sephacryl S-300 HR gels were purchased
from Pharmacia Biotech Far East Ltd., Taipei, Taiwan.
Recombinant âG was produced as described (Cheng et
al., 1997).

Cells. LS174T colon adenocarcinoma cells were ob-
tained from the American Type Culture Collection (Ma-
nassas, VA). Cells were cultured in Dulbecco’s modified
Eagle’s medium (Gibco BRL, Grand Island, NY) supple-
mented with 10% heat-inactivated bovine serum, 100
units/mL penicillin and 100 µg/mL streptomycin. Cells
were routinely tested for mycoplasma with the Rapid
Detection Kit according to the manufacturer’s instruc-
tions (Gene Probe).

Animals. BALB/c mice were obtained from the animal
room of the Institute of Biomedical Sciences, Academia
Sinica. BALB/c nu/nu mice were from the Cancer
Research Laboratory, Tri-Service General Hospital, Taipei.
Animal experiments were performed in accordance with
institute guidelines.

Antibodies. Hybridomas secreting mAb B72.3, an IgG1
mAb specific for TAG-72 antigen (Johnson et al., 1986),
and H25B10, a control IgG1 mAb against the surface
antigen of hepatitis B virus, were obtained from the
American Type Culture Collection. mAbs were purified
from ascites by affinity chromatography on Sepharose
CL-4B protein A in high-salt buffer (Ey et al., 1978).
F(ab′)2 fragments were generated by proteolytic digestion
of whole antibodies (2-5 mg/mL) with 2% bromelain in
50 mM Tris-HCl, pH 7.0, containing 2 mM EDTA and
0.1 mM cysteine for 4 h at 37 °C (Milenic et al., 1989).
After stopping the reaction by addition of N-ethylmale-
imide to 10 mM, the mixture was passed in series
through Sephadex G-50 and DE 52 columns equilibrated
with 5 mM Tris-HCl, pH 7.5, to remove IgG and Fc
fragments. The flow through fraction was concentrated
to 5 mg/mL and purified by gel filtration on Sephacryl
S-200HR (100 × 2.5 cm) equilibrated with PBS. AGP3,
an IgM mAb that binds to PEG (Cheng et al., 1999b),
was purified from ascites by gel filtration on Sephacryl
S-400HR (2.5 × 100 cm) equilibrated with PBS.

Antibody-âG-PEG Conjugates. F(ab′)2 fragments of
mAb B72.3 and H25B10 were passed through a 2.6 × 30
cm Sephadex G-25 column equilibrated with coupling
buffer (deoxygenated PBS containing 1 mM EDTA, pH
8.0) and concentrated by ultrafiltration to 3.0 mg/mL. A

3-fold molar excess of SMCC (1 mg/mL in dioxane) was
slowly added to the antibodies and allowed to react at
room temperature for 50 min. Unreacted SMCC was
removed by gel filtration on a 2.6 × 30 cm Sephadex G-25
column equilibrated with coupling buffer. The average
number of maleidido groups introduced into antibodies
(0.8-1.4) was assessed as described (Ishikawa et al.,
1987). Succinimidyl succinate poly(ethylene glycol) was
added to recombinant âG derived from Escherichia coli
(2 mg/mL) at a weight ratio of 3.3:1 in coupling buffer at
room temperature for 2 h. One-tenth volume of a satu-
rated solution of glycine in coupling buffer was added to
stop the reaction. âG-PEG was concentrated by ultrafil-
tration to 1.5 mg/mL and partially reduced by adding
dithiothreitol to a final concentration of 20 mM for 30
min at room temperature. âG-PEG was desalted on a 2.6
× 30 cm Sephadex G-25 column equilibrated with
coupling buffer and concentrated to 1.5 mg/mL. Freshly
derivatized antibody and âG-PEG were immediately
mixed at equal molar ratios, concentrated to 1.5 mg/mL
by ultrafiltration, and incubated at room temperature for
2 h. Cysteine was added to a final concentration of 2 mM
to stop the reaction, and the mixture was concentrated
by ultrafiltration to 5-8 mg/mL. Conjugates (B72.3-âG-
PEG and H25-âG-PEG) were purified by gel filtration on
a 2.6 × 100 cm Sephacryl S-300 HR column equilibrated
with PBS at a flow rate of 15 mL/h. Fractions containing
conjugate monomers (antibody/enzyme ) 1:1) were pooled
and concentrated by ultrafiltration to 2.0 mg/mL for
storage at -80 °C. The yield of conjugates averaged
around 31% based on the weight of purified conjugate
divided by the total starting weights of antibody and
enzyme. The antigen-binding activity of conjugates was
measured by ELISA in 96-well microtiter plates coated
with bovine submaxillary gland mucin (King et al., 1994).
âG activity was measured as described (Chen et al.,
1997).

Drug Sensitivity. LS174T cells were plated overnight
in 96 well microtiter plates at 40 000 cells/well. Serial
dilutions of pHAM or BHAMG in medium containing 10%
fetal calf serum were added to cells in triplicate for 24 h
at 37 °C. Cells were subsequently washed once with
sterile PBS, incubated until hour 48 in fresh medium,
and then pulsed for 12 h with [3H]leucine (1 µCi/well) in
fresh leucine-free medium. Cells were harvested with a
Filter-mate apparatus (Packard) and incorporated ra-
dioactivity was determined on a Top-Count scintillation
counter (Packard). Results are expressed as percentage
inhibition of [3H]leucine incorporation compared with
untreated cells by the following formula:

Radiolabeling of Conjugates. B72.3-âG-PEG and H25-
âG-PEG were labeled with [125I]Bolton-Hunter reagent
to specific activities of 0.3-0.7 µCi/µg according to the
manufacturer’s instructions. Conjugates retained antigen-
binding activity and specificity as determined by radio-
immunoassay against bovine submaxillary gland mucin
in 96-well microtiter plates. âG activity was unaffected
and conjugates were not degraded as determined by
autoradiography of gels after sodium dodecyl sulfate-
polyacrylamide electrophoresis.

Tumor Localization of B72.3-âG-PEG. A total of 5 ×
106 LS174T cells were injected s.c. in 6-8 week old
BALB/c nu/nu mice. After tumors reached 100-200
mm3, 200 µg (60 µCi) of [125I]B72.3-âG-PEG or [125I]H25-

% inhibition )

100 × cpm sample - cpm background
cpm control - cpm background
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âG-PEG were i.v. injected into the lateral tail vein of
mice. Groups of 3 mice were sacrificed after 24, 48, 72,
and 96 h. Tumors, blood, and organs were weighed on
an analytical balance and assayed for radioactivity in a
multichannel γ-counter. Results are expressed as uptake
of conjugate in tumor or tissues (% injected dose/gram).

In Vivo Clearance of Conjugates. Groups of two to three
BALB/c nu/nu mice were i.v. injected with 250 µg of
B72.3-âG-PEG or H25-âG-PEG at time zero. Blood
samples were periodically removed before two sequential
i.v. injection of 300 and 200 µg of AGP3 or PBS at 48
and 50 h. Additional blood samples were taken at
subsequent times and the âG activity in duplicate
samples was measured using p-nitrophenol â-D-glucu-
ronide as substrate (Wang et al., 1992). Sample concen-
trations were calculated by comparison of absorbance
values with a standard curve constructed from known
concentrations of B72.3-âG-PEG or H25-âG-PEG.

Tumor Localization of B72.3-âG-PEG after Clearance.
Groups of six to seven BALB/c nu/nu mice bearing 100-
200 mm3 LS174T tumor xenografts were i.v. injected at
time 0 with 200 µg (140 µCi) [125I]B72.3-âG-PEG or [125I]-
H25-âG-PEG. One-half of the mice was i.v. injected 48
and 50 h later with two sequential doses of 300 and 200
µg of AGP3. Mice were sacrificed after 6 h, and tumor,
blood, and organs were weighed on an analytical balance
and assayed for radioactivity in a multichannel γ-counter.
Urine sample were electrophoresed on a 3-12.5% SDS-
PAGE under reducing conditions. Dried gels were ex-
posed to X-ray film to visualize radioactive proteins.

Therapy of LS174T Tumor Xenografts. Groups of nine
BALB/c nu/nu mice were s.c. injected on the right flank
with 5 × 106 LS174T cells on day 1. On day 10, the mice
were i.v. injected via the lateral tail vein with PBS, 250
µg of B72.3-âG-PEG or H25-âG-PEG. Forty-eight and 50
h later, mice were i.v. injected with two sequential doses
of 300 and 200 µg of AGP3. Mice were i.v. injected 6 h
later with three fractionated doses of 7.5 mg/kg BHAMG
at 1 h intervals. Control groups of tumor-bearing mice
were treated with BHAMG (7.5 mg/kg × 3), pHAM (2
mg/kg × 3) or PBS alone. Therapy was repeated starting
on days 16, 26, and 41. All mice received two to four
rounds of therapy. Tumor volumes (length × width ×
height × 0.5) were estimated twice a week. Mean weight
loss was normalized to the weight of control mice by
weight loss % ) 100 - [(Ti/T0)(C0/Ci)] × 100 where Ti and
Ci are the mean weights of treated and control groups at
time i, respectively, and T0 and C0 are the mean weights
of treated and control groups before initiation of treat-
ment, respectively. Mice were killed when they displayed
signs of morbidity or when the tumor size exceeded 2.5
cm3. Groups of 8 BALB/c nu/nu mice bearing larger 200-
250 mm3 tumors were also treated as above with two
rounds of therapy starting on days 11 and 23.

Statistical Analysis. Statistical significance of differ-
ences between mean values was estimated with the
shareware program Schoolstat (White Ant Occasional
Publishing, West Melbourne, Australia) using the inde-
pendent t-test for unequal variances.

RESULTS

Characterization of the LS174T Tumor Model. LS174T
colon adenocarcinoma cells were used as a human tumor
model to examine the effect of clearance on the localiza-
tion and therapeutic efficacy of glucuronide prodrug
activation by B72.3-âG-PEG, a conjugate formed by
covalently linking F(ab′)2 fragments of mAb B72.3 to
PEG-modified âG. Antigen-binding activity of B72.3-âG-

PEG was assessed against bovine submaxillary gland
mucin due to the low expression of TAG-72 antigen on
cultured tumor cells (Horan Hand et al., 1985). B72.3-
âG-PEG retained 75% of the mucin binding activity of
mAb B72.3 (Figure 1A) and 100% of the enzyme activity
of unmodified âG (Figure 1B). Control conjugate H25-
âG-PEG did not bind mucin (Figure 1A) but retained
92.4% of native âG activity (Figure 1B). Immunohis-
tochemical analysis of antibody binding confirmed that
mAb B72.3 (Figure 2A) but not mAb H25B10 (Figure 2B)
bound to LS174T xenografts. mAb B72.3 binding to
LS174T sections was heterogeneous (Figure 2A). The
sensitivity of LS174T tumor cells to pHAM and BHAMG
was determined by measuring [3H]leucine incorporation
into cellular proteins after exposure to drugs for 24 h.
Comparison of IC50 values showed that BHAMG was 800
times less toxic than pHAM to LS174T cells (Figure 3).
The simultaneous addition of âG and BHAMG to tumor
cells resulted in a cytotoxic effect equal to pHAM alone,
indicating efficient cleavage of the glucuronide functional
group of BHAMG.

Tumor Localization of B72.3-âG-PEG. Figure 4 shows
that [125I]B72.3-âG-PEG preferentially localized in LS174T
xenografts. Maximum accumulation of [125I]B72.3-âG-
PEG in LS174T xenografts (3.11 ( 0.8% injected dose/g)
was achieved within 48 h after injection. However, the
tumor-to-blood ratio at 48 h was only 1.9. The tumor/
blood ratio of B72.3-âG-PEG increased to 4.8 at 96 h, but
immunoenzyme in tumors decreased about 3-fold from
levels achieved at 48 h. [125I]H25-âG-PEG did not specif-
ically localize in LS174T xenografts (Figure 4).

Figure 1. Immunoenzyme activity. (A) mAb B72.3 (0), B72.3-
âG-PEG (4), and H25-âG-PEG (O) were assayed by ELISA for
binding to bovine submaxillary gland mucin. Absorbance (405
nm) of wells was measured 30 min after addition of ABTS
substrate. (B) The absorbance (405 nm) of wells containing the
indicated concentrations of âG (0), B72.3-âG-PEG (4), and H25-
âG-PEG (O) was measured 15 min after addition of PNPG
substrate. Mean values of duplicate determinations are shown.
Bars, SE.
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In Vivo Clearance of Conjugates. The ability of AGP3,
an anti-PEG mAb, to clear B72.3-âG-PEG and H25-âG-
PEG from the circulation was examined by i.v. injecting
BALB/c mice with 250 µg conjugates followed 48 and 50
h later by two i.v. injections of AGP3. Figure 5 shows
that AGP3 reduced the concentration of B72.3-âG-PEG
in blood by 33-fold (13.4 to 0.41 µg/mL) and H25-âG-PEG
by 65-fold (16.8 to 0.26 µg/mL) in 6 h.

Tumor Localization of B72.3-âG-PEG with AGP3 Clear-
ance. The effect of clearance on tumor localization was
determined in BALB/c nu/nu mice bearing 100-200 mm3

LS174T xenografts. Mice were injected with radiolabeled
conjugates followed 48 and 50 h later by two i.v. injections
of AGP3. After 6 h, tumors, blood, urine, and normal
tissues were removed and counted for radioactivity.
Figure 6A shows that [125I]B72.3-âG-PEG specifically
localized in LS174T tumors. Tumor localization of B72.3-
âG-PEG after AGP3 clearance did not significantly (p >
0.1) differ from tumor uptake without clearance (2.35 (
0.18 versus 2.14 ( 0.23% injected dose/g). In contrast,

the radioactivity in serum and all tissues except for the
colon was lower with AGP3 clearance. This resulted in
improved tumor/tissue ratios of B72.3-âG-PEG for most
tissues (Table 1). For example, the tumor/blood ratio
increased from 3.9 ( 0.2 to 29.6 ( 3.1. Although the
control conjugate did not specifically accumulate in
LS174T xenografts, clearance with AGP3 further de-
creased the concentration of H25-âG-PEG in the blood
and most tissues (Figure 6B). The radioactivity in urine
after clearance of both B72.3-âG-PEG and H25-âG-PEG
with AGP3 was significantly (p < 0.005) greater than
without clearance (results not shown). Autoradiographic
analysis of urine samples after electrophoresis on SDS-
PAGE revealed the presence of low-molecular-weight 125I-
labeled peptides but no intact conjugates (data not
shown), indicating that AGP3 clearance resulted in the
rapid metabolism of conjugates.

Therapy of LS174T Xenografts. The antitumor activity
of BHAMG in combination with B72.3-âG-PEG after
clearance of free conjugate with AGP3 was examined.
BALB/c nu/nu mice bearing 50-100 mm3 xenografts
received two i.v. injections of AGP3 48 and 50 h after i.v
administration of B72.3-âG-PEG or H25-âG-PEG. Mice
then received three i.v. injections of BHAMG. Control
groups of tumor-bearing mice were treated with BHAMG
alone, pHAM alone, or PBS. All mice received two to four
rounds of therapy. Figure 7A shows that mean tumor size
in mice treated with B72.3-âG-PEG, AGP3, and BHAMG
was significantly (p e 0.0005) smaller than mice receiving
other forms of treatment. Control conjugate in combina-
tion with AGP3 and BHAMG as well as prodrug or
pHAM alone did not significantly (p > 0.1) delay tumor
growth compared to untreated controls. Table 2 shows
that treatment toxicity was minimal with a maximum
weight loss of 6% over four rounds of therapy. In contrast,
pHAM treatment caused a maximum weight loss of 13%
over two rounds of therapy even though it did not provide
antitumor activity. Treatment of mice bearing larger
LS174T xenografts with a combination of B72.3-âG-PEG,
AGP3, and BHAMG also produced significant antitumor
activity (Figure 7B).

Figure 2. Specificity of B72.3 for LS174T xenografts. Frozen section of LS174T tumors were incubated with mAb B72.3 (A) or
H25B10 (B) followed by biotin-labeled goat anti-mouse Ig and streptavidin-conjugated horseradish peroxidase before addition of
substrate. Magnification: 200×. The sections were counterstained with hematoxylin. Examples of positive immunostaining are
indicated with arrows.

Figure 3. Sensitivity of tumor cells to pHAM and BHAMG.
LS174T colon adenocarcinoma cells were expose to pHAM (0),
BHAMG (O), or BHAMG plus 1 µg/well âG (4) for 24 h, washed
with PBS and incubated in fresh medium for 24 h before [3H]-
leucine incorporation was determined. The cellular protein
synthesis rate of drug-treated cells is compared to untreated
control cells. Bars, SE of triplicate determinations.

Glucuronide Prodrug Therapy of Cancer Bioconjugate Chem., Vol. 11, No. 2, 2000 261



DISCUSSION

mAb B72.3 has been utilized for diagnostic imaging in
more than 1000 carcinoma patients with specific tumor
localization demonstrated in 70-80% of carcinomas. Cyt-
103, 111In-labeled B72.3, is also approved for the detection
of extrahepatic intraabdominal metastases from colorec-
tal or ovarian cancer (Divgi, 1996). Preclinical and clinical
imaging studies have demonstrated that B72.3 does not
internalize after binding to TAG-72 but remains at the
tumor site for a number of days following localization
(Colcher et al., 1984). Lack of antigen modulation after
antibody binding is required to allow efficient activation
of BHAMG because this prodrug must be enzymatically

activated outside of tumor cells for maximum cytotoxicity
(Cheng et al., 1999a). Although cultured tumor cells
express low levels of TAG-72, tumor xenografts display
up to a 100-fold increase in antigen expression (Horan
Hand et al., 1985). TAG-72 distribution, however, is
heterogeneous in both LS174T xenografts (this work) and
mucinous adenocarcinoma of the human colon (Schlom,
1986).

âG-PEG was covalently linked to the F(ab′)2 fragment
of mAb B72.3 to reduce the size of B72.3-âG-PEG and
prevent binding to Fc receptors on hematopoietic cells.
We have previously shown that PEG modification of âG
allows increased serum half-life and tumor uptake with
decreased normal tissues binding (Cheng et al., 1997).
In the present study, maximum uptake of [125I]B72.3-âG-
PEG in LS174T xenografts was achieved within 48 h.
BHAMG could not be administered at this time, however,
because serum concentrations of conjugate exceeded 1 µg/
mL, the maximum concentration of âG in serum that
produced acceptable toxicity from systematically acti-
vated prodrug (unpublished results). Without AGP3-
mediated clearance, attainment of safe levels of B72.3-
âG-PEG in plasma required at least 4 days, at which time
the conjugate level in tumor had decreased to 36% of the
peak levels at 48 h. Similar or longer intervals are
required for other antibody-enzyme conjugates (Bosslet
et al., 1994; Svensson et al., 1998), prompting the interest
(Sharma et al., 1990; Rogers et al., 1995) in accelerating
the clearance of immunoenzymes after maximum tumor
uptake has been achieved.

mAb AGP3 has previously been demonstrated to ef-
ficiently remove PEG-modified proteins from the circula-
tion (Cheng et al., 1999b). In the present study, we found
that AGP3 not only reduced the serum concentration of
conjugates by 33-65-fold in 6 h but also accelerated the
clearance of immunoenzyme from most normal tissues.

Figure 4. Biodistribution of 125I-labeled immunoenzymes in LS174T tumor-bearing mice. Radioactivity of tumors and tissues was
determined (A) 24, (B) 48, (C) 72, and (D) 96 h after nude mice bearing 100-200 mm3 LS174T tumors were i.v. injected with 200 µg
(140 µCi) B72.3-âG-PEG (solid bars) or H25-âG-PEG (open bars). Results represent the mean values of three mice. Significant
differences between B72.3-âG-PEG and H25-âG-PEG are indicated; (*) p e 0.05; (**) p e 0.005. Bars, SE.

Figure 5. In vivo clearance of immunoenzymes by AGP3
antibody. BALB/c mice were i.v. injected at time 0 with 250 µg
B72.3-âG-PEG or H25-âG-PEG. Two i.v. injections of AGP3
(300, 200 µg) or PBS were given at 48 and 50 h. Mean serum
concentrations from two to three mice are shown. Bars, SE.
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Importantly, AGP3 did not significantly reduce tumor
accumulation of B72.3-âG-PEG, in contrast to some other
clearance systems (Pedley et al., 1989; Sharkey et al.,
1992; Kerr et al., 1993). The large size of AGP3 (IgM)
may hinder passage of the mAb into the tumor interstitial
space, minimizing interactions between localized immu-
noconjugate and AGP3. The tumor/blood ratios of B72.3-
âG-PEG increased from 3.9 to 29.6 at 48 h with AGP3
clearance. This can be contrasted with a tumor/blood
ratio of 4.8 at 96 h without clearance. The low tumor/

blood ratio without clearance can be attributed to the
loss of immunoenzyme from the tumor during the pro-
longed period required for immunoenzyme to reach safe
levels in serum. Clearance of immunoenzyme with AGP3
thus allowed earlier administration of prodrug when
immunoenzyme localization at tumor cells was maximal.

Figure 6. The effect of AGP3 clearance on tumor localization
of immunoenzyme. Groups of 6-7 BALB/c nu/nu mice bearing
100-200 mm3 LS174T tumor xenografts were i.v. injected at
time 0 with 200 µg (140 µCi) [125I]B72.3-âG-PEG (A) or [125I]-
H25-âG-PEG (B). At 48 and 50 h, half the mice were i.v. injected
with two fractionated doses of AGP3 (300 and 200 µg) whereas
the other half received PBS. Mice were sacrificed after 6 h and
tumors, blood and organs were assayed for radioactivity. Results
represent the mean values of 3-4 mice. Significant differences
between immunoenzyme uptake with and without AGP3 clear-
ance are indicated; (*) p e 0.05; (**) p e 0.005. Bars, SE.

Table 1: Tumor/Tissue Ratio of Conjugates after
Clearance with AGP3a

tumor/tissue ratio

B72.3-âG-PEG H25-âG-PEG

tissue
no

clearance
AGP3

clearance
no

clearance
AGP3

clearance

tumor 1 1 1 1
blood 3.9 ( 0.2 29.6 ( 3.1 0.3 ( 0.1 2.2 ( 0.8
lung 12.5 ( 3.3 33.5 ( 3.0 1.4 ( 0.4 5.5 ( 2.1
liver 15.9 ( 2.9 19.2 ( 0.8 1.1 ( 0.2 1.5 ( 0.6
spleen 19.0 ( 2.6 27.7 ( 5.2 1.8 ( 0.5 3.5 ( 1.5
kidney 18.1 ( 1.3 31.0 ( 2.0 1.4 ( 0.5 2.2 ( 0.2
intestine 6.4 ( 1.7 165 ( 56 4.8 ( 1.3 10.1 ( 2.9
colon 54.3 ( 7.4 50.2 ( 8.3 3.6 ( 0.5 3.1 ( 0.33
urine 1.1 ( 0.1 0.6 ( 0.1 0.1 ( 0.02 0.03 ( 0.001

a Groups of three or four mice bearing 100-200 mm3 solid
LS174T tumors were injected with radiolabeled conjugates fol-
lowed 48 and 50 h later by two i.v. injections of AGP3 or PBS.
After 6 h, tumors, blood, urine, and normal tissues were removed
and counted in a gamma counter.

Figure 7. In vivo antitumor activity of prodrug treatment. (A)
Groups of 9 BALB/c nu/nu mice bearing 50-100 mm3 LS174T
tumors were i.v. injected with B72.3-âG-PEG (0) or H25-âG-
PEG (9) on day 9 followed by two i.v. injections of AGP3 on day
11. After 6 h, mice were i.v. injected with BHAMG (7.5 mg/kg
× 3). Control groups of tumor-bearing mice were treated with
BHAMG (4), pHAM (O), or PBS (b) alone. Therapy was
repeated starting on days 16, 26, and 41. The mean size of
tumors in mice sequentially treated with B72.3-âG-PEG, AGP3,
and BHAMG was significantly (p e 0.0005) smaller than control
tumors after day 14. B, Groups of eight nude mice bearing 200-
250 mm3 LS174T tumors were treated with two round of
therapy as above starting on days 11 and 23. The mean size of
tumors in mice sequentially treated with B72.3-âG-PEG, AGP3
and BHAMG were significantly (p e 0.005) smaller than control
tumors after day 16. Bars, SE.

Table 2: Toxicity of Therapya

round of therapy

1 2 3 4

weight loss %
PBS 0 0 0 NM
pHAM 6.8 13.0 NM NM
BHAMG 1.7 4.0 1.7
B72.3-âG-PEG/AP3/BHAMG 3.5 5.0 3.8 6.0
H25-âG-PEG/AGP3/BHAMG 3.9 6.6 4.6 NM

a Groups of 9 BALB/c nu/nu mice bearing 50-100 mm3 solid
tumors were i.v. injected with PBS, 250 µg of B72.3-âG-PEG or
H25-âG-PEG follow 48 h later by two i.v. injections of AGP3 or
PBS. After 6 h, mice were i.v. injected with BHAMG (7.5 mg/kg ×
3). Control groups of mice were treated with BHAMG (7.5 mg/kg
× 3), pHAM (2 mg/kg × 3) or PBS alone. Mice received 2-4 rounds
of therapy. b NM, not meaningful due to mouse deaths.
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Significant antitumor activity with minimal toxicity
was demonstrated against LS174T xenografts treated
with B72.3-âG-PEG and AGP3 followed by BHAMG
administration. The degree of tumor suppression achieved
with minimal toxicity by prodrug therapy compares
favorably with conventional drugs such as 5-fluorouracil
(Blumenthal et al., 1994) and doxorubicin (Meyer et al.,
1995) in the LS174T xenograft model. B72.3-âG-PEG
appeared to be rapidly catabolized into small peptides
that were eliminated in the urine and possibly bile.
Soluble IgM immune complexes are primarily removed
from the circulation and catabolized by the mononuclear
phagocyte system in the liver, spleen, and lungs by
receptor-mediated binding of high mannose oligosaccha-
rides exposed upon conformational changes in IgM
induced by antigen binding (Day et al., 1980). The low
toxicity of BHAMG treatment observed after clearance
of B72.3-âG-PEG with AGP3 indicates that cleared
conjugate was unavailable for prodrug activation, con-
sistent with rapid degradation of the immunoenzyme
after clearance.

mAb B72.3 possesses modest affinity for TAG-72 (Ka

) 2.54 × 109 M-1) (Muraro et al., 1988). High antibody
affinity, however, may be critical for the success of
immunoconjugate therapy. For example, a â-lactamase
immunoenzyme constructed from a high-affinity antibody
against melanotransferrin showed greater tumor uptake
and produced tumor regressions and cures in mice,
whereas a low affinity L6 immunoenzyme was ineffective,
even though the expression of L6 antigen was 2-fold
higher than that of melanotransferrin (Svensson et al.,
1998). Similarly, a high-affinity mAb against ovarian
cancer accumulated to higher levels in tumor xenografts
compared to a lower affinity mAb (Kievit et al., 1996).
Second generation mAbs against TAG-72 with higher
affinities [CC49, Ka ) 16.2 × 10-9 M-1 and CC83, Ka )
27.7 × 10-9 (Muraro et al., 1989)] display improved tumor
uptake (O’Boyle et al., 1994) and therapeutic efficacy as
radioimmunoconjugates (Schlom et al., 1992) compared
with B72.3. Immunoenzymes employing CC49 or CC83
may, therefore, improve the therapeutic efficacy of pro-
drug treatment.

Most of the enzymes currently under investigation for
the targeted activation of anti-neoplastic prodrugs are
of microbial origin such as â-lactamase from Enterobacter
cloacae (Kerr et al., 1995), carboxypeptidase G2 from
Pseudomonas species (Blakey et al., 1996), â-glucu-
ronidase (Chen et al., 1997), nitroreductase (Anlezark et
al., 1995), and penicillin-G amidase (Vrudhula et al.,
1993) from E. coli, and cytosine deaminase from bakers
yeast (Wallace et al., 1994). These enzymes are expected
to induce a strong immune response as has been found
for carboxypeptidase G2 in a pilot clinical trial (Sharma
et al., 1996), thereby limiting the number of times that
immunoenzymes can be administered to patients. The
utilization of human enzymes to activate antineoplastic
prodrugs may not completely prevent this problem since
recombinant human proteins can also induce immune
responses in patients (Atkins et al., 1986; Gribben et al.,
1990). Immunosuppressive drugs such as cyclosporin A,
cyclophosphamide, and deoxyspergualin can decrease or
delay the immune response against antibodies (Leder-
mann et al., 1991), immunotoxins (Pai et al., 1990) and
antibody-enzyme conjugates (Sharma et al., 1996). Im-
munosupression, in addition to producing toxicity in some
patients (Sharma et al., 1996), may hinder the develop-
ment of antitumor immunity generated by prodrug
therapy (Chen et al., 1997).

Immune responses against proteins are attenuated by
attachment of PEG (Abuchowski et al., 1977). PEG, in
contrast to immunosuppressive drugs, is not toxic and
does not affect systemic immunity. PEG modification has
been shown to reduce the immunogenicity of enzymes
(Abuchowski et al., 1977), antibodies (Kitamura et al.,
1991), toxins (Wang et al., 1993), and recombinant
human proteins (Katre, 1990). PEG modification of
bacterial enzymes may allow repeated administration of
immunoenzymes for ADEPT without the need to employ
toxic immunosuppressive drugs. PEG-modified enzymes
of the proper molecular size can also preferentially
accumulate in tumors and are under investigation for
tumor selective prodrug activation (Bagshawe et al.,
1999). AGP3 binds to the backbone of PEG (Cheng et al.,
1997 and unpublished results) independent of the linker
or protein employed. AGP3 should therefore be generally
applicable to the accelerated clearance of PEG-modified
immunoenzymes, radioimmunoconjugates and imaging
agents as well as for the analysis of PEG-modified
proteins.
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