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Abstract

Monoclonal antibodies specific for cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA4) are a novel form of cancer
immunotherapy. While preclinical studies in mouse tumor models have shown anti-tumor efficacy of anti-CTLA4 injection or
expression, anti-CTLA4 treatment in patients with advanced cancers had disappointing therapeutic benefit. These
discrepancies have to be addressed in more adequate pre-clinical models. We employed two tumor models. The first model
is based on C57Bl/6 mice and syngeneic TC-1 tumors expressing HPV16 E6/E7. In this model, the HPV antigens are neo-
antigens, against which no central tolerance exists. The second model involves mice transgenic for the proto-oncogen neu
and syngeneic mouse mammary carcinoma (MMC) cells. In this model tolerance to Neu involves both central and peripheral
mechanisms. Anti-CTLA4 delivery as a protein or expression from gene-modified tumor cells were therapeutically efficacious
in the non-tolerized TC-1 tumor model, but had no effect in the MMC-model. We also used the two tumor models to test an
immuno-gene therapy approach for anti-CTLA4. Recently, we used an approach based on hematopoietic stem cells (HSC) to
deliver the relaxin gene to tumors and showed that this approach facilitates pre-existing anti-tumor T-cells to control tumor
growth in the MMC tumor model. However, unexpectedly, when used for anti-CTLA4 gene delivery in this study, the HSC-
based approach was therapeutically detrimental in both the TC-1 and MMC models. Anti-CTLA4 expression in these models
resulted in an increase in the number of intratumoral CD1d+ NKT cells and in the expression of TGF-b1. At the same time,
levels of pro-inflammatory cytokines and chemokines, which potentially can support anti-tumor T-cell responses, were
lower in tumors of mice that received anti-CTLA4-HSC therapy. The differences in outcomes between the tolerized and non-
tolerized models also provide a potential explanation for the low efficacy of CTLA4 blockage approaches in cancer
immunotherapy trials.
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Introduction

Activation of T-cells requires recognition of antigens presented

in complex with CD80 and CD86. These costimulatory molecules

interact with CD28, which is constitutively expressed on T cells

and triggers T-cell activation. Once activated, T-cells transiently

up-regulate cytotoxic T lymphocyte–associated antigen 4 (CTLA4)

on their cell surface. CTLA4 shares structural features with the

costimulatory receptor CD28 and reciprocally targets the same

costimulatory molecules (CD80/86) on the antigen-presenting cell,

but with higher affinity. This results in inhibition of T-cell

proliferation and IL-2 production. Blocking CTLA4 with anti-

CTLA4 antibodies enhances effector T-cell responses and can

induce T-cell mediated rejection of certain tumors in mouse

models [1,2,3,4]. Monoclonal antibodies specific for cytotoxic T

lymphocyte-associated antigen 4 (CTLA4) are a form of

experimental immunotherapy for treatment of patients with

advanced cancers, including melanoma, prostate cancer, renal

cell carcinoma, non-Hodgkin’s lymphoma, colorectal carcinoma,

non-small lung breast cancer, and pancreatic cancer [5]. Two fully

humanized monoclonal antibodies, ipilimumab (MDX-010, Me-

darex) and tremelimumab (CP-675,206, Pfizer), have been

investigated in cancer [6,7]. A Phase III trial of tremelimumab

has been halted after it failed to demonstrate superior therapeutic

activity over standard chemotherapy in advanced melanoma

patients. The discrepancy in pre-clinical and clinical studies with

anti-CLTA4 antibodies requires more mechanistic studies in

adequate pre-clinical models. A potential mechanism by which

anti-CTLA4 may provide an antitumor response is through

depletion of regulatory T-cells (Tregs), as Tregs have constitutive

expression of CTLA4 and are known to have suppressive activity.

Alternatively, CTLA4 blockade may activate effector T-cells

allowing them to be more resistant to Treg suppression. Recent

studies indicate that anti-CTLA4 induce immune responses

mainly by direct activation of effector T-cells rather than by

affecting Tregs [8,9].

In this study, we used two tumor models that assess anti-CTLA4

antibody therapy. The first is a murine cervical cancer model
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based on human papillomavirus (HPV)-16 E6/E7–expressing TC-

1 tumors. In this model, the HPV antigens represent neo-antigens

against which no central tolerance mechanisms exit in mice. Most

studies on the mechanisms of immune-activation by CTLA4-

blocking antibodies have been performed in such ‘‘non-tolerized’’

models [10,11,12,13]. In humans, however, most tumor-associated

antigens (TAAs) are non-mutated self-antigens, which are

overexpressed or re-expressed on cancer cells. Several mechanisms

of central and peripheral tolerance therefore exist against self-

TAAs that blunt T-cell responses. Tolerance against TAA has to

be considered in tumor models that are used to delineate the anti-

tumor mechanisms of anti-CTLA4 antibodies. This is accom-

plished in our second animal model, based on neu-transgenic (neu-

tg) mice. These mice overexpress the rat protooncogene Neu and

develop spontaneous mammary tumors between 4 and 8 months

of age [14,15]. Mouse mammary carcinoma cells (MMC) are a

transplantable carcinoma line derived from a spontaneous

mammary tumor from neu-tg mice. The neu-tg/MMC model has

significant biologic and pathologic similarity to human neu-

associated estrogen receptor-negative breast cancer. MMC tumors

are resistant to doxorubicin, hormone therapy, and Neu-specific

mAbs. The tumor antigen repertoire in MMC-tumor bearing mice

appears to be predictive for human breast cancer antigens.

Importantly, neu-tg mice mimic central/peripheral tolerance to an

endogenous tumor antigen that is seen in cancer patients. In this

context, Neu-targeted vaccines, which raise strong CD8-T cell

responses to a dominant peptide (RNEU420-429) in (non-

tolerized) WT FVB/N mice and protect them from a neu-

expressing tumor challenge, fail to do so in neu-transgenic mice.

The latter suggests significant differences between tolerized and

non-tolerized tumor models, which have to be considered in

testing the effect of new immunotherapy agents.

For delivery of anti-CTLA4 immunotherapy, we used three

different approaches; i) systemic application of a monoclonal

antibody against murine CTLA4 (4F10), ii) intratumoral expres-

sion of a secreted form of this antibody from genetically modified

tumor cells, iii) expression of the anti-CTLA4 antibody after gene

delivery using a stem cell based approach.

The central findings from our studies are i) anti-CTLA4 therapy

is inefficient in the tolerized MMC model and ii) in both tumor

models, anti-CTLA4 expression mediated by the HSC delivery

approach not only failed to exert anti-tumor effects, but increased

the rate of tumor growth. Our data suggests that the latter involves

an increase in intratumoral CD1d+ NKT cells, production of

IFNb1, as well as suppression of cytokines and chemokines that

are involved in mediating anti-tumor immune responses. Our

findings shed light on the complexity of immune regulation,

specifically in the context of anti-CTLA4 therapy.

Materials and Methods

Anti-CTLA4 antibodies
Monoclonal antibodies against mouse CTLA4 were purified

from the supernatant of UC10-F10-11 hybridoma cells (ATCC) as

described previously [16].

Lentivirus vectors
The anti-CTLA4 scFv was cloned from total RNA isolated from

UC10-F10-11 hybridoma cells (ATCC). Leucine residues at

positions 43 and 89 in the 4F10 variable region light chain

sequence were mutated to methionine and glutamine, respectively,

to increase scFv expression [17]. The anti-CTLA4 scFv was

inserted into pHook (Invitrogen, Carlsbad, CA) immediately after

the Vk leader sequence and HA epitope tag and before the myc

epitope and platelet-derived growth factor receptor transmem-

brane domain. A stop codon was introduced immediately after the

myc epitope to allow secretion of the antibody. The cDNA

fragment coding the hinge-CH2-CH3 of human IgG1 was inserted

between the scFv and myc epitope. The entire anti-CTLA4

cassette was then transferred into pLVPT-rTRKRAB [18] to

generate pLVaCTLA4. To create the construct for the insulated

vector (I-LV-aCTLA4), the aCTLA-4, IRES, tetR-KRAB and

WPRE from pLVaCTLA4 was transferred into pLenti-cHS-PGK

[19] containing a 0.4 kb fragment of the chicken HS4 insulator

within the 39 LTR. VSV-G pseudotyped viruses were generated as

described earlier [20]. Genome titers were measured by qPCR

and ranged from 1-56107 genomes/ml.

Cells
Mouse mammary carcinoma (MMC) cells were established

from a spontaneous tumor in a neu-tg mouse [21]. TC-1 cells were

from the American Type Culture Collection (ATCC) Culture

conditions for MMC and TC-1 cells were RPMI-1640 medium

containing 10% fetal bovine serum (FBS), 2 mM L-glutamine

(Gln), 100 U/ml penicillin (P), and 100 mg/ml streptomycin (S).

To obtain mouse HSCs, donor mice were injected with 5-FU

(150 mg/kg) i.v. two days before bone marrow isolation. Bone

marrow cells were cultured for three days in IMDM, 18%FBS, 5%

mIL-3 (BD Biosciences, San Jose, CA), 100 U/ml mIL-6, 50 U/

ml SCF (PeproTech, Rocky Hill, NJ), P/S, and Gln. Non-

adherent cells were collected and incubated with lentivirus vectors

at an MOI of 2 genomes/cell on retronectin-coated plates for two

days.

Animal studies
All experimental procedures involving animals were conducted

in accordance with the institutional guideline set forth by the

University of Washington. Neu-transgenic (neu-tg) mice [FVB/N-

Tg(MMTVneu)202 Mul] were obtained from the Jackson Labo-

ratory (Bar Harbor, ME). These mice harbor non-mutated, non-

activated rat neu under control of the mouse mammary tumor virus

(MMTV) promoter. The neu transgene is expressed at low levels in

normal mammary epithelium, salivary gland, and lung. Until the

age of 8 months ,35% of female neu-tg mice spontaneously

develop mammary carcinomas that display high Neu-expression

levels. CTLs specific for the immunodominant H-2 Dq/

RNEU420–429 epitope can be detected in neu-tg mice using the

corresponding tetramer [22]. For HSC transplantation, a total of

16106 of whole bone marrow cells or lineage cell depleted bone

marrow cells from 5-FU treated mice were transplanted into

lethally irradiated (1050 cGy) female neu-tg mice. Six weeks after

bone marrow transplantation, the mice received 56105 MMC or

56104 TC-1 cells via subcutaneous injection. Tumors were

measured every other day and tumor volume was calculated as

the product of length x width x width. For survival studies tumor

sizes $500 mm3 were considered the experimental endpoint.

Animals with skin surface ulcerations were excluded from

experiments and sacrificed immediately.

Anti-CTLA4 antibody ELISA
Two-fold serial dilutions of the culture medium were incubated

for 45 minutes in 96-well microtiter plates previously coated with

500 ng/well recombinant CTLA4 protein [16]. After washing, the

wells were incubated with biotin-labeled anti-HA antibody

(Roche, Mannheim Germany), followed by streptavidin-HRP

(Jackson ImmunoResearch Laboratories) and finally 1-StepTM

Ultra TMB-ELISA (Thermo Scientific, Rockford, IL) substrate for

Anti-CTLA4 Antibody Therapy
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30 min at room temperature. The absorbance of wells (405 nm)

was measured with a microplate reader.

Mouse cytokine array
Pieces of tumor were homogenized in Complete Lysis Buffer M

(Roche) using TissueRuptor (Qiagen). The total protein concen-

tration was determined using the Protein Assay reagent from Bio

Rad. For each sample, 100 mg were assayed and the Cytokine

Array Panel A (R&D Systems) was performed according to

manufacturer’s suggestions. For the development of the assay,

ECL Plus (GE Healthcare) was used together with Amersham

Hyperfilm ECL (GE Healthcare). The developed films were

scanned and intensities were quantified with SigmaGel (Jandel

Scientific, San Rafael, CA).

Anti-CTLA4 mRNA
mRNA isolation from MMC-Rlx cells and qRT-PCR was

performed as described recently [23]. cDNA was synthesized using

the QuantiTect Reverse Transcription Kit (Qiagen). For PCR the

SYBR Kit (Bioline, Taunton, MA) and the following primers were

used

aCTLA4, fw 59- ACC CCT CAC AAT CAC TGT CC -39

aCTLA4, rev 59- CAC CTG CAG GAA GAA CTG GT -39

Anti-CTLA4 mRNA was equalized to levels of GAPDH mRNA

measured in parallel in each sample. Ct values were calculated

using the Sequence Detection System software (Applied Biosys-

tems). The difference between the number of PCR cycles required

for the two samples to reach a certain fluorescence signal shows

how much of the mRNA of interest is present in the two samples

relative to each other. Each cycle difference is equal to a fold

difference of 2.

qRT-PCR TGF-b1
Pieces of tumor were homogenized using TissueRuptor

(Qiagen) and total RNA was purified with miRQURY RNA

Isolation Kit (Exiqon, Woburn, MA). RNA concentration was

measured on a NanoDrop ND-1000 (Thermo Scientific).

Generation of cDNA was done with QuantiTect Reverse

Transcription Kit (Qiagen) and the qPCR reaction was run, in

triplicates, on a 7900HT Fast Real-Time PCR System (Applied

Biosystems/Life Technologies) using the SensiMix SYBR Kit

(Quantace, London, UK).

Primers (synthesized by Integrated DNA Technologies):

mTGFB1 fw 59-GGCTACCATGCCAACTTCTG -39

mTGFB1 rev 59-CGCACAATCATGTTGGACA -39

mTGFB2 fw 59-TGAGGTGTGAATGCAAGGAG-39

Figure 1. Effect of anti-CTLA4 antibody injection on MMC and TC-1 tumor growth. A) C57Bl/6 mice with subcutaneous TC-1 tumors were
injected with 100 mg anti-CTLA4 and control IgG antibody intraperitoneally (i.p.) every other day. Treatment was started when tumor reached a
volume of 50 mm3. Tumor volumes were measured thrice a week. Each line represents an individual animal. p,0.05 for time points after day 16. B)
neu-transgenic mice with subcutaneous MMC tumors were treated as described in A). The difference between the two groups was not significant.
doi:10.1371/journal.pone.0022303.g001
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Figure 2. Lentivirus vectors expressing anti-CTLA4. A) Structure of integrated provirus genomes. The vectors contain the gene for the
monoclonal antibody 4F10 (ATCC: UC10-4F10-11) specific to mouse CTLA4. The anti-CTLA4 gene contains an immunoglobulin Vk signal peptide, an
HA epitope, the anti–CTLA4 scFv, the hinge, CH2 and CH3 domains of human IgG1, and a myc epitope. The anti-CTLA4 gene is under the control of a

Anti-CTLA4 Antibody Therapy
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mTGFB2rev 59-CAGTGAAGTGGAAGGGGAAA-39

mTGFB3fw 59-GCCATTTCCCTCCTACCCTA-39

mTGFB3 rev 59-CATCCATGATTCCCCAAAAA -39

PCR was carried out as follows: after an initial 10-minute

enzyme activation step at 95uC, 40 amplification cycles were run,

each consisting of 95uC for 15 s and 60uC for 1 min. Lastly, a final

elongation step was performed for two minutes at 60uC. Data was

collected initially and after every incubation at 60uC. Anti-TGF-b
mRNA was equalized to levels of GAPDH mRNA measured in

parallel in each sample.

Analysis of TILs
Three weeks after tumor cell transplantation, mice were

sacrificed and tumors and spleen were harvested. Isolated MMC

tumors were minced and filtered through a 70-mm cell strainer.

Tumor infiltrating lymphocytes (TILs) were then isolated from

tumor cells/erythrocytes by centrifugation in a Ficoll gradient.

TILs as well as splenocytes from tumor-bearing mice were used for

analysis of Neu-specific T-cells using a Neu-tetramer assay. The PE-

labeled H-2Dq/RNEU420–429 (H-2D(q)PDSLRDLSVF) tetra-

mer was obtained from the National Institute of Allergy and

Infectious Diseases MHC Tetramer Core Facility (Atlanta, GA).

Flow cytometry was performed with the following monoclonal

antibodies (final concentration 5 mg/ml): anti-FoxP3-PE (clone

FHK16s, eBiosciences, San Diego, CA), anti-CD4-PE, anti-CD8-

PE, anti-CD8-FITC, anti-CD25-FITC (clone 7D4) (all BD

Biosciences), anti-CD25-FITC (clone PC61.5; eBiosciences), and

NK1.1-FITC (clone PK136, BD Biosciences), anti CD1d-PE

(clone 1B1, BD Biosciences). All samples were treated with Fc-

block (anti–CD16/CD32, BD Biosciences). Corresponding isotope

controls yielded no significant staining.

Immunohistochemistry for mouse tissue and organs
Tumors were embedded in Optimal Cutting Temperature

(OCT) medium and frozen at 280uC. Sections were cut at a

thickness of 8 mm and fixed in methanol:aceton (1:1 v/v) at

220uC for 10 min. Nonspecific binding was blocked by 2% non-

fat dry milk in PBS for 20 min at RT. Primary antibodies were

incubated at RT for 1 h. We used anti-CD1d-biotin (clone 1B1,

BD Biosciences) and anti-NK1.1-FITC (clone PK136, BD

Biosciences) antibodies. For histological assessment of autoimmune

disease, mouse tissues and organs (heart, lung, brain, stomach,

mesenterium, liver, kidney, muscle, skin) were fixed in 10%

formalin and processed for hematoxilin and eosin staining. All

samples were examined by two experienced pathologists for typical

inflammation signs in a blind fashion. Immunohistochemistry for

IgG on kidney sections was performed as described for tumor

sections using a polyclonal, HRP-labeled, anti mouse IgG

antibody (eBiosciences).

Blood analysis
Mouse blood was analyzed using a HemaVet 950FS machine.

Statistical analyses
Statistical significance of in vivo data was analyzed by Kaplan-

Meier survival curves and logrank test (GraphPad Prism Version

4). Statistical significance of in vitro data was calculated by two-

sided Student’s t-test (Microsoft Excel). P values,0.05 were

considered statistically significant. JMP statistical package was

used to perform power analysis and determine the minimal

number of animals per group. Using parameters of alpha = 0.05;

power = 80%; effect size = 50% (80% chance of observing a

difference of 50% in tumor size at a level of significance of 0.05),

we arrived at a minimal group size of 5 for a comparison of two

groups. Therefore, all experiments were performed at least once

with 5 animals per group and, if required, repeated with additional

animals until significance was achieved.

Results

Systemic application of anti-CTLA4 antibody
Clinically, antiCTLA4 antibodies are administered systemically.

For our studies in mouse models, we used a monoclonal antibody

against murine CTLA4 (4F10). Systemic administration of this

antibody has been shown before to trigger tumor-destructive

immune responses in several mouse tumor models [24,25]. As in

those studies, we started injecting anti-CTLA4 or control antibody

when tumors reached a volume of 50 mm3. Injections were

repeated every other day. While in the TC-1 tumor model, anti-

CTLA4 injection significantly delayed tumor growth, it had no

therapeutic effect in the MMC tumor model (Figs. 1A, B). These

studies indicate that anti-CTLA acts differently in tolerized and

non-tolerized tumor models.

Expression of anti-CTLA4 antibody from tumor cells
While systemic anti-CTLA4 administration is technically

straightforward, it is cost-extensive and also bears the risk of

inducing auto-immune responses [16]. These problems can, in

part, be addressed by gene therapy approaches resulting in

intratumoral expression of genes encoding anti-CTLA4 antibod-

ies. Expression of anti-CTLA4 antibodies inside the tumor has

advantages over systemic administration. Presumably, at sites

where the TAA levels are elevated, such as in the tumor

microenvironment, peripheral tolerizing mechanisms must be

enhanced relative to other tissues. To be most effective, the

concentration of immune-stimulatory molecules should therefore

be high in the tumor environment. Recently, an immunostimu-

latory effect of intratumoral expression of a gene encoding a

secreted form of the anti-CTLA4 antibody has been shown in a

model for autoimmune diabetes [26].

To test our therapy approaches, we generated improved

versions of lentivirus vectors. These vectors are self-inactivating

(SIN), i.e. contain a deletion within the 39LTR, which abolishes

the LTR promoter activity (Fig. 2A). Because it had been shown

that a chromatin insulator derived from the chicken globin locus

tTR-KRAB system [18]. tRT-KRAB bound to tet-operator sequences represses promoters in the vicinity of 3-4 kb. Addition of Dox releases this
repression. The vector also contains a central polypurine tract (cPPT) and a woodchuck hepatitis virus post-transcriptional regulatory element (WPRC).
In the insulated vector version (I-LV-aCTLA4), a 0.4 kb cHS4 insulator element [43] is inserted into the 398 bp U3 promoter/enhancer deletion (U3D).
Upon proviral integration into host genome, the U3 region containing the cHS4 is copied over to the 59 LTR. B) Evaluation of anti-CTLA4 expression
on protein level for clones derived after transduction of MMC cells with LV-aCTLA4 (upper panel) or I-LV-aCTLA4 (lower panel). Solid bars: Dox
induced expression. Clones were treated with Dox and 24 h later anti-CTLA4 was measured by ELISA in culture supernatants. Empty bars (to the right
side of solid bars): non-induced expression levels: supernatant from clones w/o Dox treatment were analyzed by ELISA. (Note, that these bars are not
visible for LV-aCTLA4). Anti-CTLA4 levels in the corresponding populations of transduced cells (Pop) are shown on the right. C) Fold change of anti-
CTLA4 mRNA levels after culture with or without doxycycline for 24 h measured. Clones that expressed the highest levels of anti-CTLA4 protein were
included in this analysis. mRNA was isolated and subjected to qRT-PCR for GAPDH and anti-CTLA4 mRNA. Shown is the fold difference of GAPDH
normalized anti-CTLA4 mRNA levels with and without Dox induction. Standard deviation was less than 10%.
doi:10.1371/journal.pone.0022303.g002
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Figure 3. Growth and analysis of tumors derived from tumor cells transduced with LV-aCTLA4. A and B) MMC-aCTLA4 cells were injected
and Dox treatment was started when tumors reached a volume of 50 mm3. Kaplan-Meier survival studies (cut-off is 1000 mm3). Dox was delivered
with i.p. injection (A) or drinking water (B). N = 5. C) Flow cytometry of tumor infiltrating leukocytes and splenocytes in the MMC-aCTLA4 model. At
day 30, tumors, tumor-draining lymph nodes and spleens were harvested. The percentages of Neu specific CD8+ T-cells were measured by tetramer
assay. Shown are the average percentages of marked cells in all TILs, lymph node cells and splenocytes. Standard deviations were less than 10%.
N = 3. D) TC-aCTLA4 cells were injected and Dox treatment was started when tumors reached a volume of 50 mm3. Kaplan-Meier survival studies (cut-
off is 1000 mm3). Dox was delivered with drinking water. N = 5.
doi:10.1371/journal.pone.0022303.g003
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control region DNase I hypersensitivity 4 region (cHS4) protects

retrovirus vectors from chromosomal position effects of integration

and from silencing, particularly in HSCs and their progeny

[27,28], we constructed an ‘‘insulated’’ SIN vector (I-LV-

aCTLA4) by inserting the 0.4 kb cHS4 into the 39 LTR. In the

integrated I-LV-aCTLA4 provirus DNA, the transgene cassette is

therefore flanked by two HS4 insulators (Fig. 2A, lower panel). A

corresponding vector without cHS4 insulators was called LV-

Figure 4. Therapy study with LV-aCTLA4/I-LV-aCTLA4 transduced HSCs and induction of transgene expression by Dox in drinking
water. A) Scheme of the experiment: A total of 56105 LV-transduced mouse HSCs were transplanted into lethally irradiated neu-tg mice via tail
injection. Six weeks after HSCs engraftment, MMC tumors were established via injection of 56105 MMC cells subcutaneously. Selected groups of mice
received Dox in drinking water. B) Therapy study with mice that were transplanted with LV-aCTLA4 or I-LV-aCTLA4 transduced mouse HSCs; Tx(LV-
aCTLA4, and Tx(I-LV-aCTLA4), respectively. Dox (0.2 mg/ml) was added to drinking water of selected groups starting at day 1 after MMC cell
implantation. Each line represents an individual animal. C) Survival of MMC tumor bearing mice. The day tumors reached a volume of 900 mm3

represented the endpoint in Kaplan-Meier survival studies. N.5.
doi:10.1371/journal.pone.0022303.g004

Figure 5. Therapy study with I-LV-aCTLA4 transduced HSCs and induction of transgene expression by Dox by intraperitoneal
injection. Treatment scheme was as described in Fig.2. Mice received an i.p. injection of PBS or Dox (0.5 mg/mouse in 500 ml PBS) starting at day 7
after MMC cell transplantation and then every other day. A) Tumor volumes, B) Kaplan-Meier survival study (cut-off volume was 700 mm3). N.5.
doi:10.1371/journal.pone.0022303.g005

Anti-CTLA4 Antibody Therapy
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aCTLA4. The anti-CTLA4 antibody expression cassette can be

activated by the addition of Dox, and Dox withdrawal ceases anti-

CTLA4 antibody expression. This safety feature was built in to

control potential side effects of anti-CTLA4 by expressing it only

transiently. To functionally validate the vectors and assess the

impact of the cHS4 insulators on position effects of integration, we

infected MMC cells at an MOI of 1 cfu/cell and established clonal

cultures by limited dilution. Anti-CTLA4 protein levels were

measured in supernatants of the population (w/o subcloning) and

20 clones with and without Dox induction (Fig. 2B). There was no

significant difference in induced anti-CTLA4 protein levels

between I-LV-aCTLA4 transduced MMC cell clones and clones

that were transduced with the non-insulated vector. As a more

sensitive means to measure anti-CTLA4 expression we used qRT-

PCR (Fig.2C). The increase in anti-CTLA4 mRNA levels upon

Dox treatment was also not significantly greater in I-LV-aCTLA4

transduced clones compared to LV-aCTLA4 clones (p = 0.06).

Overall, these data show that the inclusion of chromatin insulators

into lentivirus vectors did not improve Dox mediated regulation of

transgene expression.

For therapy studies in vivo, we used an MMC cell clone that

stably expressed anti-CTLA4 under Dox control (clone 4

generated from LV-aCTLA4 transduced MMC cells; see

Fig. 2B). MMC-aCTLA4 cells were injected into neu-tg mice.

When tumors reached a volume of 50 mm3, Dox was given either

intraperitoneally (Fig. 3A) or in drinking water (Fig. 3B) to half of

the mice. Induction of anti-CTLA4 expression in vivo was

confirmed on the mRNA level by qRT-PCR and protein level

by ELISA with tumor lysates (data not shown). Dox induction of

anti-CTLA4 expression in MMC-aCTLA4 cells in vivo did not

prolong survival in both models. Flow cytometry analysis revealed

significantly higher percentage of Neu-specific CD8 cells in the

tumor and tumor-infiltrating lymph nodes in the MMC-

aCTLA4+Dox group compared to the corresponding group that

did not receive Dox (Fig. 3C). Interestingly, Dox induced anti-

CTLA4 expression appeared to increase the percentage of NK

cells in the tumor and spleen. There was no significant difference

in the number of CD4/CD25 cells, i.e Tregs.

For studies with the TC-1 model, we selected a TC1-aCTLA4 cell

clone that produced similar anti-CTLA4 levels as the MMC-

aCTLA4 clone upon Dox induction. In contrast to the study in the

MMC model, anti-CTLA4 expression from TC-1 cells resulted in a

significant delay in tumor growth (Fig. 3D). This is in agreement with

an earlier study, in which we also showed that the anti-tumor effect is

mediated by an increase of tumor-infiltrating IFNc-producing CD8+

T cells [16]. Again these studies suggest that anti-CTLA4 has no

therapeutic effect in tolerized tumor models, although it appears to

increase the number of intratumoral effector T-cells.

HSC based delivery of anti-CTLA4 gene
Because viral gene transfer to epithelial tumors is inefficient, we

employed a new stem cell based approach to deliver the anti-

CTLA4 gene to the tumor [20]. Both types of tumors have

epithelial features including various intercellular junctions and

extracellular matrix surrounding tumor nests. These physical

barriers limit the efficacy of gene delivery using virus-based vectors

[29,30]. Because of this, stem cell based gene delivery approaches

have been evaluated. In this context, the tropism of mesenchymal

stem cells (MSC) for tumors has been exploited to deliver anti-

tumor cytokine genes using ex vivo gene-modified MSCs [31].

Furthermore, based on the finding that monocytes/macrophages

have the ability to migrate within tissues, even in hypoxic

microenvironments, genetically modified monocytes/macrophag-

es or progenitors have been used to delivery therapeutic genes to

tumors [32]. We have previously developed an approach based on

hematopoietic stem cells (HSCs) for in vivo gene delivery [20]. This

approach is based on the fact that tumor cells secrete a number of

chemokines that actively mobilize myeloid progenitors from the

bone marrow and recruit them to the tumor stroma, where they

differentiate into tumor-associated macrophages (TAMs). TAMs

are critical for tumor survival as they produce factors that trigger/

support tumor growth, neoangiogenesis, immune escape and

stroma development. Our approach involves the ex vivo transduc-

tion of bone marrow derived HSCs with lentivirus vectors that

express the transgene under control of a Doxycyline (Dox)-

inducible transcription cassette, and the transplantation of these

cells into myelo-conditioned recipients, where they engraft in the

bone marrow and provide a long-term source of genetically

modified cells that will home to tumors. This approach allows for

efficient transgene delivery to the center of tumors. For example,

in mice transplanted with HSCs transduced with a GFP expressing

lentivirus vector, ,5% of all cells in MMC tumors were GFP

positive, whereby most of the transgene expressing cells were

TAMs [20,33]. In a recent study, we also showed that the

inducible intratumoral expression of the peptide hormone relaxin

after the transplantation of mouse HSCs transduced with a

relaxin-expressing lentivirus vector, delayed tumor growth in the

MMC-tumor model [20]. Here we used this ‘‘Trojan Horse’’

approach to deliver the anti-CTLA4 antibody gene to TC-1 and

MMC tumors.

Figure 6. HSC-based anti-CTLA4 gene therapy in the TC-1 tumor model. Mice were treated as described in Fig. 4A. The experiment was
terminated at day 18. A) Tumors were excised and measured. N = 5. B) Representative excised tumors.
doi:10.1371/journal.pone.0022303.g006
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As a source of HSCs, we used bone marrow cells from mice that

were injected intravenously with 5-FU (150 mg/kg) two days prior

to the collection of bone marrow. Bone marrow cells were cultured

for three days and non-adherent cells (enriched for HSCs and

primitive progenitors) were mock-transduced or transduced with

LV-aCLTA4 or I-LV-aCTLA4 at an MOI of 1 cfu/cell. An

aliquot of transduced HSCs was used to confirm successful

transduction and anti-CTLA4 expression by qRT-PCR on cells

cultured for 2 days. The rest of the cells were transplanted into

lethally irradiated neu-tg mice. Six weeks later, subsequent to the

bone marrow engraftment of genetically modified cells, mice were

subcutaneously injected with MMC cells and Dox was given in

drinking water to selected groups of animals (for a schematic of the

experiment see (Fig. 4A). Mice were followed for 35 days. Animals

were sacrificed before the end of the observation period if the

tumors reached a volume of 1,000 mm3 or ulcerated. In explanted

tumors, anti-CTLA4 mRNA was measured by qRT-PCR. In mice

that received LV-aCTLA4 transduced HSCs, tumor anti-CTLA4

mRNA levels were 36-fold (+/25) higher in Dox-treated mice

compared to mice that received drinking water without Dox.

There was no significant difference in anti-CTLA4 levels between

LV-aCTLA4 and I-LV-aCTLA4 (Fig. 4B). Tumor volumes of

individual mice and Kaplan-Meier survival studies are shown in

Fig.4C. Unexpectedly, Dox treatment, i.e. induction of anti-

CTLA4 expression in tumors, shortened the survival of mice (Tx(I-

LV-aCTLA4) + Dox vs Tx(I-LV-aCTLA4): p = 0.029 and Tx(LV-

aCTLA4) +Dox vs Tx(LV-aCTLA4): p = 0.095). Dox treatment of

mock-transplanted mice did not affect MMC tumor growth [20].

To consolidate these findings, we performed a second experiment

where Dox was given intraperitoneally to better control its delivery

to mice (Fig. 5). As seen before, Dox-induced anti-CTLA

expression did not exert therapeutic effects and shortened the

life-span of animals.

In the TC-1 model, so far, injection of anti-CTLA4 or

expression from TC-1 cells significantly delayed tumor growth.

However, when we employed the HSC-based approach for in vivo

expression of anti-CTLA4, we found a marked stimulation of TC-

1 tumor growth upon Dox induction of anti-CTLA4 expression.

Furthermore, tumor growth in the Tx(I-LV-aCTLA4 +Dox)

group was more invasive involving subcutaneous muscle tissues.

Because of this, it was impossible to measure tumor volumes over

time. We therefore show the tumor volumes at the end of the

observation period (day 35) (Fig. 6A). Representative explanted

tumors are show in Fig.6B.

In summary, when the anti-CTLA4 gene was delivered using

the HSC-based approach, it stimulated tumor growth in both

tumor models.

Mechanism of failure of HSC-based anti-CTLA4 therapy
To understand why anti-CTLA4 in these models did not

suppress tumor growth, we performed flow cytometry and

immunofluorescence analyses of immune cells in the spleen and

the tumors. In addition to standard analyses for CD4 T-cells,

NK cells, and Tregs, we also searched for changes in potential

immunosuppressive cells. Among the latter is a specialized

subset of NKT cells [10,34,35]. NKT cells are a unique T-cell

subset expressing both TCR and NK cell receptors. Most NKT

cells are restricted by the MHC class I–like molecule CD1d. In

the mouse, most CD1d+ NKT cells are CD4+. An involvement

of NKT in mediating tolerance to self-antigens and suppressing

auto-immune inflammatory reactions has been reported in

experimental and human autoimmune diseases [36]. A potential

pathway that leads to immunosuppression involves the secretion

of IL-13 by NKT cells and subsequent activation of Gr-

1+CD11b+ myeloid suppressor cells, which in turn produce

TGF-b1 [37]. In agreement with earlier studies [16], we found

less CD4/CD25+ Tregs in I-LV-aCTLA+Dox tumors and

spleen than in I-LV-aCTLA tumors (Figs. 7A and C).

Importantly, however, both flow cytometry analysis of TILs

(Fig.7A) and immunofluorescence analysis of tumor section

(Fig.7B) showed significantly more CD1d+ cells in TILs of mice

where anti-CTLA4 production was induced by Dox than in

Tx(LV-aCTLA4) mice without Dox treatment and control mice

that received mock transplantation (p = 0.026). The majority of

CD1d+ cells in Tx(I-LV-aCTLA+Dox) tumors were CD4 cells

(Fig.7A). Flow cytometry data were supported by costaining of

tumor sections for CD1d and CD4 or NK.1.1 (Fig.7B). Notably,

there was no significant difference in the composition and

percentages of MMC tumor infiltrating leukocytes in Tx(I-LV-

aCTLA) mice (without Dox induction) and mice that did not

receive a bone marrow transplantation. Analysis of splenocytes

of treated animals also showed a significant difference in the

percentage of CD1d+ of I-LV-aCTLA+Dox and I-LV-aCTLA

animals (Fig.7C, D). Figure 7 shows data from studies in the

MMC tumor model. The outcome of studies in the TC-1 tumor

model was similar.

To further elucidate mechanisms of failure of HSC-based anti-

CTLA4 therapy, we analyzed the expression of cytokines and

chemokines in tumors. As TGF-b1 potentially mediates the

immunosuppressive effect of CD11d+ NKT cells, we measured

TGF-b1 mRNA by qRT-PCR in TC1 and TC1-aCTLA4+Dox

tumors (Fig.8A). We found 49+/25-fold higher concentrations of

TGF-b1 mRNA in TC1-aCTLA4+Dox tumors than in TC-1

tumors. RNA levels of TGF-b2 and TGF-b3, i.e. cytokines that

are not involved in immunosuppression did not differ between the

two groups. Other cyto- and chemokines were analyzed by

commercial proteome arrays. (These arrays did not cover TGF-b).

The outcome of these studies was consistent for the TC-1 and

MMC tumor models. In both models, HSC-mediated anti-

CTLA4 expression resulted in a marked decrease of pro-

inflammatory cyto- and chemokines in tumors, including IL-1b,

MIG, MIP-1a, MIP-1b, and RANTES (Figs. 8B-D).

Notably, in all therapy studies, there were no signs of auto-

immune responses such as changes in fur color or presence of

inflammatory infiltrates on tissue sections of liver, lung or colon.

Furthermore, immunohistochemistry staining for IgG complexes

on kidney sections did not reveal abnormalities. Blood cell counts

were normal in all groups of both models.

In summary, anti-CTLA4 expression from HSC progeny

increases the percentage of CD4+/CD1d+ cells in tumors, which

correlates with increased production of TGF-b1. Additionally, we

found less cytokines that are involved in the activation of anti-

Figure 7. Analysis of immune cells in tumors and spleens of mice treated with I-LV-aCTLA4 transduced HSCs and induction of
transgene expression by Dox by intraperitoneal injection. At day 28, tumors and spleens from Tx(I-LV-aCTLA4) and Tx(I-LV-aCTLA4)+Dox
mice were harvested and analyzed. A) Tumors infiltrating leukocytes and splenocytes were subjected to flow cytometry for Cd1d, CD4, CD25, and
NK1.1. N = 3. B) Tumors were sectioned and stained with antibodies against CD1d (red) and CD4 (green) (upper panel) or CD1d (red) and NK1.1
(green) (lower panel). Representative sections are shown. The scale bar is 40 mm. C) Flow cytometry analysis of splenocytes. N = 3. D)
Immunofluorescence analysis of spleen sections. upper panel: CD1d (red) and CD4 (green); lower panel: CD1d (red) and NK1.1 (green).
doi:10.1371/journal.pone.0022303.g007
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tumor immune responses and attraction of T-cells in anti-CTLA4

expressing tumors.

Discussion

Increased understanding of immune-regulatory mechanisms is

required for the development of new immunotherapy agents that

can modulate these signaling pathways and potentially break

tumor tolerance. In this study, we report two findings: i) systemic

delivery of anti-CTLA4 antibodies or intratumoral expression has

different effects in non-tolerized and tolerized mouse tumor

models and ii) HSC-mediated anti-CTLA4 expression triggers

immunosuppressive mechanisms, which facilitate tumor progres-

sion.

There is an emerging picture that the same mechanisms that

prevent autoimmunity also inhibit anti-tumor immune responses.

The central problem in cancer immunotherapy is that most TAAs

are non-mutated self-antigens that have triggered both central and

peripheral tolerance. It is therefore important to test new

immunotherapy approaches in mouse models, in which tolerance

against the inoculated tumor and specific TAAs exist. Central

tolerance is established by selection in the thymus: T-cells bearing

T-cell receptors with high affinity for self-antigen are eliminated

through apoptosis [38]. Additionally, peripheral T-cell tolerance is

required to suppress the remaining auto-reactive T-cells in the

periphery.

One goal of this study was to evaluate the anti-tumor effect of

anti-CTLA4 in a mouse model that resembled key features of

breast cancer in patients, most importantly tolerance to a TAA

(Neu) and the presence of Neu-reactive T-cells. Anti-CTLA4

delivery as a protein or expression from gene-modified tumor

cells were therapeutically efficacious in the non-tolerized TC-1

tumor model, but had no effect in the MMC-model, in spite of the

fact that anti-CTLA4 expression from MMC tumors increased the

number of Neu-specific T-cells. Neu-tg mice are tolerant to Neu. It

has been discussed that in this model, subpopulations of high-

avidity Neu-specific T cells are deleted centrally, whereas T-cells

with lower avidity can leave the thymus but are subject to

peripheral mechanisms of tolerance [22,39]. This implies that

tolerance to Neu involves both central and peripheral mechanisms.

This finding suggests that the central tolerance mechanism must

be overcome to enable intra-tumoral Neu-specific T-cells to kill

tumor cells.

The model involving ex vivo transduced tumor cells is clinically

not relevant. We therefore assessed an approach that would allow

in vivo delivery of the anti-CTLA4 gene to the tumor. While viral

gene delivery to epithelial tumors is inefficient after systemic

application, recently a number of stem cell-based approaches have

shown more promise. Our stem cell gene delivery approach is

based on the ex vivo modification of HSCs, which home to the

tumor after transplantation and deliver therapeutic transgenes to

the tumor stroma. For HSC transduction, we used insulated SIN

lentivirus vector with Dox-inducible transgene expression. In

recent studies, we used the HSC-based approach to deliver the

relaxin gene to tumors [20,40]. In the MMC tumor model we

showed that this approach facilitates pre-existing anti-tumor T-

cells to control tumor growth. Furthermore, in xenograft models

with Her2/neu positive breast cancer cells, HSC-mediated relaxin

expression improved the anti-tumor efficacy of trastuzumab/

Herceptin [33]. However, unexpectedly, when used for anti-

CTLA4 gene delivery in this study, the HSC-gene approach was

therapeutically detrimental in both the TC-1 and MMC- models.

Anti-CTLA4 expression in these models triggered at least two

reactions. It increased the percentage of CD1d+ NKT cells in

tumors. These cells can theoretically activate myeloid suppressor

cells, which in turn, produce TGF-b1. In support of this, we found

,50-fold higher TGF-b1 mRNA levels in tumors of mice that

received anti-CTLA4-HSC gene therapy. Additionally, HSC-

based anti-CTLA4 gene delivery resulted in lower intratumoral

levels of cytokines (e.g. IL-1b) and chemokines (e.g. MIG, MIP-1,

RANTES) that stimulate immune responses. Proinflammatory

cytokines such as IL-1b create a milieu in the tumor that is

supportive for the activation of T- effector cells. Furthermore, a

number of cells of the immune system, including pre-cDCs, show

positive chemotaxis to CCL3 in a dose-dependent manner [41].

It remains in question, why expression of anti-CTLA4 from

TC-1 cells had a positive therapeutic effect, while anti-CTLA4

expression after HSC transplantation into C57Bl/6 mice did not.

Progeny of transplanted HSCs not only home to tumors and

differentiate into TAMs, but also reconstitute spleen, thymus, and,

potentially, macrophages in other tissues [20]. This implies that

anti-CTLA4 is also expressed in non-tumoral tissue, which could

have accounted for the unexpected outcome described above.

Based on recent evidence that TAMs have a unique gene

expression signature that distinguishes it from other tissue

macrophages [42], we are currently working on TAM-specific

expression systems to increase the tumor-specificity of transgene

expression.

Overall, these findings suggest that stem cell based delivery

methods, particularly for immuno-stimulatory genes, must ensure

homing of stem cells to tumors or exclusive expression within

tumors. The differences in outcomes between the tolerized and

non-tolerized models also provide a potential explanation for the

low efficacy of CTLA4 blockage approaches in cancer immuno-

therapy trials.
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