Ph.D. National Tsing Hua University
Postdoc Assoc. Yale University
The molecular chaperon MRJ (DNAJB6) exhibits two splice isoforms that have different roles in human viral infection, but the regulatory mechanism of MRJ isoform expression is yet unclear. In this study, we show that reduction of the polyadenylation factor CstF64 was correlated with the increase of the MRJ large isoform (MRJ-L) in human macrophages, and elucidate the mechanism underlying CstF64-modulated MRJ isoform expression. Moreover, we exploited an antisense strategy targeting MRJ-L for virus replication. A morpholino oligonucleotide complementary to the 5’ splice site of MRJ intron 8 downregulated MRJ-L expression and suppressed the replication of not only human immunodeficiency virus (HIV-1) but also respiratory syncytial virus (RSV). We demonstrated that downregulation of MRJ-L level reduced HIV-1 replication as well as the subgenomic mRNA and viral production of RSV. The present finding that two human health-threatening viruses take advantage of MRJ-L for infection suggests MRJ-L as a potential target for broad-spectrum antiviral strategy.