Dr. Lin, Teng-Nan 's publons link picture

林天南博士

兼任研究員
  • 886-2-2789-9141 (Lab) (Room No: 404)
  • 2652-3936 (Office)
  • 2785-8847 (Fax)

Specialty:
  • Cerebral Ischemia
  • Angiogenesis
  • Neurochemistry

Education and Positions:
  • Ph.D. in Biochemistry, Univ. of Missouri-Columbia.


Highlight Detail
...

Clinacanthus nutans Mitigates Neuronal Apoptosis and Ischemic Brain Damage Through Augmenting the C/EBPβ-Driven PPAR-γ Transcription

Dr. Lin, Teng-Nan
Molecular Neurobiology, Sep 23, 2017

Clinacanthus nutans Lindau (C. nutans) is a traditional herbal medicine widely used in Asian countries for treating a number of remedies including snake and insect bites, skin rashes, viral infections, and cancer. However, the underlying molecular mechanisms for its action and whether C. nutans can offer protection on stroke damage in brain remain largely unknown. In the present study, we demonstrated protective effects of C. nutans extract to ameliorate neuronal apoptotic death in the oxygen-glucose deprivation model and to reduce infarction and mitigate functional deficits in the middle cerebral artery occlusion model, either administered before or after hypoxic/ischemic insult. Using pharmacological antagonist and siRNA knockdown approaches, we demonstrated ability for C. nutans extract to protect neurons and ameliorate ischemic injury through promoting the anti-apoptotic activity of peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor. Reporter and chromatin immunoprecipitation promoter analysis further revealed C. nutans extract to selectively increase CCAAT/enhancer binding protein (C/EBP)β binding to specific C/EBP binding site (-332~-325) on the PPAR-γ promoter to augment its transcription. In summary, we report a novel transcriptional activation involving C/EBPβ upregulation of PPAR-γ expression to suppress ischemic neuronal apoptosis and brain infarct. Recognition of C. nutans to enhance the C/EBPβ → PPAR-γ neuroprotective signaling pathway paves a new way for future drug development for prevention and treatment of ischemic stroke and other neurodegenerative diseases.