Dr. Lim, Carmay 's orcid link picture Dr. Lim, Carmay 's publons link picture

Dr. Lim, Carmay

Emeritus Research Fellow
  • +886-2-2789-9043 (Lab) (Room No: N117)
  • +886-2-2652-3031 (Office)
  • +886-2-2788-7641 (Fax)

Specialty:
  • Computational Biophysics
  • Computational Chemistry
  • Bioinformatics

Education and Positions:
  • 1984, Ph.D. in Chemical Physics, University of Minnesota, Minneapolis

    1979, B.S. in Chemistry, Royal Holloway College, London University

     


Highlight Detail
...

Why Cellular Di/Triphosphates Preferably Bind Mg2+ and Not Ca2+

Dr. Lim, Carmay
Journal of Chemical Theory and Computation, Nov 27, 2019

Di/triphosphates perform a multitude of essential tasks, being important components of many vital organic cofactors such as adenosine/guanosine di/triphosphate (ADP/GDP, ATP/GTP), flavin adenine dinucleotide, and nicotinamide adenine dinucleotide and its phosphate derivative. They are generally bound to cations inside cells, in particular Mg2+ in the case of ATP/GTP. Yet how their metal-binding modes depend on the number, charge, and solvent exposure of the polyphosphate group and how Mg2+and Ca2+ dications that coexist in cellular fluids compete for di/triphosphates in biological systems remain elusive. Using density functional theory calculations combined with a polarizable continuum model, we have determined the relative free energies and stabilities of the different binding modes of di- and triphosphate groups to Mg2+ and Ca2+. We show that the thermodynamic outcome of the competition between Mg2+ and Ca2+ for cellular di/triphosphates depends mainly on the oligomericity/charge and metal-binding mode of the phosphate ligand as well as the solvent exposure of the binding site. Increasing the charge and thus denticity of the phosphate ligand from bi- to tridentate in a buried binding pocket enhances the affinity of the host system for the stronger charge acceptor, Mg2+. The cellular di/triphosphates’s intrinsic properties and the protein matrix allowing them to bind a dication bi/tridentately, along with the higher cytosolic concentration of Mg2+ compared to Ca2+, enables Mg2+ to outcompete Ca2+ in binding to these highly charged anions. This suggests an explanation for why nature has chosen Mg2+ but not Ca2+ to perform most of the essential tasks associated with biological triphosphates.