Dr. Huang, Yi-Shuian 's orcid link picture Dr. Huang, Yi-Shuian 's publons link picture Dr. Huang, Yi-Shuian 's Personal Homepage Dr. Huang, Yi-Shuian 's Youtube

Dr. Huang, Yi-Shuian

Research Fellow
Division Chief
  • 02-2789-9174 (Lab) (Room No: N703)
  • 02-2652-3523 (Office)

  • Translational Control/ RNA 轉譯調控
  • Cap modification/ RNA-cap 修飾調控
  • Molecular & Cellular Neuroscience/ 分子與細胞神經生物學

Education and Positions:
  • Ph.D. University of Texas Southwestern Medical Center at Dallas

Highlight Detail

CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory

Dr. Huang, Yi-Shuian
Molecular Psychiatry, May 02, 2023




The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.