Psoriasis is a chronic inflammatory skin disease that develops under the influence of the IL-23/T helper 17 cell axis and is characterized by intense inflammation and prominent epidermal hyperplasia. In this study, we demonstrate that galectin-8, a β-galactoside‒binding lectin, is upregulated in the epidermis of human psoriatic skin lesions as well as in a mouse model of psoriasis induced by intradermal IL-23 injections and in IL-17A‒treated keratinocytes. We show that keratinocyte proliferation is less prominent in galectin-8‒knockout mice after intradermal IL-23 treatment than in wild-type mice. In addition, we show that galectin-8 levels in keratinocytes are positively correlated with the ability of the cells to proliferate and that transitioning from mitosis into G1 phase is delayed in galectin-8‒knockout HaCaT cells after cell-cycle synchronization and release. We demonstrate by immunofluorescence staining and immunoblotting the presence of galectin-8 within the mitotic apparatus. We reveal by coimmunoprecipitation and mass spectrometry analysis that α-tubulin interacts with galectin-8 during mitosis. Finally, we show that in the absence of galectin-8, pericentrin compactness is lessened and mitotic microtubule length is shortened, as demonstrated by immunofluorescence staining. We conclude that galectin-8 is upregulated in psoriasis and contributes to the hyperproliferation of keratinocytes by maintaining centrosome integrity during mitosis through interacting with α-tubulin.